# Estimating the risk of a 10 asset portfolio
num_stocks = 10
weights = [1 / num_stocks] * num_stocks # vector (list) of weights
vcv_matrix = returns_df.cov() # variance covariance matrix
# Calculate variance and standard deviation of the 10 asset portfolio
var_portfolio = np.dot(np.transpose(weights), np.dot(vcv_matrix, weights))
sd_portfolio = np.sqrt(var_portfolio)
sd_portfolio_annual = sd_portfolio * np.sqrt(250)
# Estimate individual stock risks for comparison
individual_risks = np.std(returns_df) * np.sqrt(250)